Nanomaterials-Based Electrodes for Energy Storage Devices with Fast Rate Capabilities

Amit Singhal and Ganesh Skandan Nanopowder Enterprises Inc.

Dr. Glenn Amatucci Telcordia Technologies

Acknowledgments

US Department of Energy, Energy Storage Research Program
US DOE Small Business Innovative Research (SBIR)
DOE 2002 Project

NEI Markets

- -Nano enables the application of-
- Polymer Nanocomposites: coatings and bulk
 - Nanoparticles for Drug Delivery
 - Nanoparticle laden fluids
 - Specialty Nanopowders
 - Rechargeable Batteries

High Rate Energy Storage Devices

Goals of the Program

- Develop nanostructured anodes for a new type of high rate energy storage device called Asymmetric Hybrid Cell
- Fabricate prototype Asymmetric Hybrid Cell with following features-
 - Capable of working efficiently over a wide temperature range (-30°C to 70°C)
 - Long cycle life (> 100,000 cycles)
 - Power density as good as that of a supercapacitor
 - Energy density comparable to, or higher than, that of Pb-acid batteries
 - Fast rate of charge (complete charge in 1 min.)

Concept of High Rate Asymmetric Hybrid Cell

Courtesy Telcordia Technologies

A thin, flexible, highly manufacturable and non-aqueous plastic laminar device

Reference: Amatucci et al., Journal of The Electrochemical Society, 148 (8), A930 (2001)

Ultrafine Electrodes Exhibit Faster Rate Capabilities

- Li₄Ti₅O₁₂ Electrodes -

Long Cycle Life of Prototype Hybrid Cells

Cathode: High surface area activated carbon (700 – 2000 m²/g)

Anode: Ultrafine Li₄Ti₅O₁₂; Electrolyte: 1M LiPF₆ in 2:1 volume ratio of

ethylene carbonate: dimethyl carbonate

Dimensions: 6" X 4" (Courtesy Telcordia Technologies)

Rationale for Lithium Intercalating Anode Materials

Intercalation voltage

Carbon: ~ -3V SHE

Li₄Ti₅O₁₂: -1.5V SHE

WO₂: - 2.3V SHE

Courtesy Telcordia Technologies

Carbonaceous materials are unsafe to operate in high rate applications, because of the risk of Li plating

WO₂ has the Highest Output Voltage

Courtesy Telcordia Technologies

Use of WO₂ anodes will enhance the energy density of asymmetric hybrid cell

Low Temperature Synthesis

Spherical Particles with Ultrafine Crystallites

Spherical particles will result in high packing density of electrodes Surface area = 15 m²/g

Ultrafine WO₂ Powders Are Electrochemically Active

Electrochemical Data in An Asymmetric Hybrid Cell

Program Overview

